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Dennis Goodman

University of California, Lawrence Livermore Laboratory
P.O. BoX 5504, L-156

Livermore, California 94550

I. Introduction

In two dimensions, the problem of pro-
ducing a transfer function which is stable
and which approximates a desired frequency
response is usually very intractable. One
way around this problem is to begin with a
transfer function whose response is easily
designed and then transform this transfer
function into a new one whose response ap-
proximates the given desired response. The
spectral transformation procedure [1,2]
begins with a transfer function, F(z1,z2),

whose response we wish to modify, and in-
volves finding two functions, G(z1,z2) and

H(z1,z2) such that the new transfer func-

tion F[G(z1,z2),H(z1,z2)1 has the response

we desire. As was stated in [1], theSe two
functions are required to be such that
they:

1. produce a stable transfer function
from a stable transfer function;

2. transform a real rational function
into a real rational function;

3. preserve some important character-
istics of the frequency response
(e.g., ripple magnitudes) while modi-
fying others (e.g., cutoff fre-
quencies).

The functions we will use here are the same
as those used in [11: real rational all-
pass functions having the form:

G(z1,z2) =

H(zl,z2) =

MN
~19z29c(z;l,z;q

C(Z1,Z-2) (1)

z~z;hD(z;l, z;l)

D(z1,z2)

*This work was performed under the auspices
of the U.S. Department of Energy by the
Lawrence Livermore Laboratory under con-
tract number w-7405-ENG-49.

Such functions obviously satisfy the
second condition; to show that they
satisfy the third, we first observe that

-iwl -iu2
lG(e ,e )1 = 1 and lH(e-iwl,e-iw2)l

= 1 v (@l,w2) t [-r,r]2; hence, for each
2

such (w1,@2) 3 (U1,U2) E [-~,fil :

-iw -iw iu
G(e l,e 2, = e 1

-iw -iw2 iu2
H(e l,e ) = e

Therefore, the frequency response of the
new transfer function, i.e. :

-iw -iw2 -iwl -iu2
F[G(e l,e ), H(e ,e “)1 (3)

(2)

is a function which is the composition of
the frequency response of the original

-iw
1

-iw2
transfer function, F(e ,e ), with the

following map from [-z,~]
2 2

to [-m,?r]:

-iwl
(U1,U2) ~ [Arg{G(e ,e

-iw21 ~,

-iw “
Arg{H[e l,e -1W2) }1 (4)

Since we can view the new frequency re-
sponse as a composition of the old fre-
quency response with a mapping of the 2-D
frequency plane into itself, we conclude
that the third requirement is satisfied.

In the quarter-plane case, the con-
ditions for satisfying the first require-
ment, that the filter be stable, are simple.
It was shown in [1] that if the denominator
functions of F(z1,z2), G(zl,z ), and

-? Q {(Z1,Z2):H(z1,z2) are all nonzero on U

Izll ~ 1, [Z21 = 11, then so will be the
denominator function Of F[G(zl,z2)1

H(z1,z2)]. Hence, a sufficient condition

for the new transfer function to be stable
is that the denominators of the original
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transfer function and of the functions
given by (1) all be nonzero on the unit
bidisc. Unfortunately, the conditions for
nonaymmetric half-plane filters are not as
general, and we must consider special cases.

II. Stability of Spectral Trans-
formations for Nonsynunetrlc-
Half-Plane Filters

4 We will call A(zl,z2) a quarter-plane

function if it is a 2-D polynomial. On
the other hand, we will call A(zl,z2) a

nonsymmetric half-plane function if it is
of the form:

N

A(z1,z5) = + a(O,n)z~ +

The lower
summation

L m’
MN

IL-sa(m,n)z~z~
= --La

(5)

case subscripts on the limits of
correspond to the upper case

letter which is the symbol for-the given
function, e.g., if the function were
B(z1,z2), then the limits in (5) would be

~, Nb, andLb.

The following lemma is obvious from
the definitions given above.

Lemma 1. The sum or product of two quarter-

-unctions is a quarter-plane function,
the sum or product of two nonsymmetric half-
plane functions is a nonsymmetric half-plane
function, and the sum or product of a non-
symmetric half-plane function and a quarter-
plane function is a nonsymmetric half-plane
function.

We will now consider two cases in
which spectral transformation preserve
stability.

Case I. F(z1,z2) = A(z1,z2)/B(z1,z2)

is a quarter-plane transfer function (i.e.,
A(z1,z2) and B(zl,z2) are quarter-plane

functions) with B(zl,z2) satisfying the

stability condition B(z1,z2) # O on ~2.

The all-pass functions of (1) have denomin-
ator functions C(Z1,Z2) and D(z1,z2) which

are nonsymmetric half-plane functions and
which satisfy the stabilit
that they be nonzero on ~ ~ ~~~d$~~ ~~
{(0,22): IZ21 s 1} and r~ {(21,22): Izll

=1, 1221 =1}.

In this case, the transfer function
F[G(zl,z2) , H(zl,z2)l will be a stable
nonsymmetric half-plane transfer function

if the positive integers M ,N
9 9’ ‘h ‘ and Nh,

which are defined by equation (1), and the
non-negative integers Mc, Nc, Md, and N

d’
which are defined by equation (5), satisfy
the four inequalities:

Mg2Mc, IJg ZNc, Mh>Md, NhZN
d (6)

To show that the new transfer function
is stable, we first clear the fractions
from numerator and denominator to give:

F[G(z1,z2),H(z1,z2)] =

A[G(z1,z2),H(z1,z2)] [C(Z1,Z2)1a[D(zl,z2 )]P

B[G(Z1,Z2),H (Z1,Z2)I[C(Z1 ,22)1 %(z1,z2)]P

where a = max{Ma,FQ and 6
The denominator of (7) may

(7)

= max{Na,Nb}.

be written as:

% ‘h
.[z1 Z2 D(z~l,zjl)]

.[C(Z1,Z2)I ‘-m[D(zl,z2)]p-n] (8)

If we inequalities (6) are satisfied, then

% ‘hD(z~l, z~l) and z~z}D(z~l, z~l) are
‘1 ‘2
quarter-plane functions, and since C(Z1,Z2)

and D(zl,z2) are nonsymmetric half-plane

functions, -equation (8) is a nonsymmetric
half-plane function by lemma 1. The same

kind of argument can be applied to the
numerator of (7) and so we conclude that
(7) has the form of an nonsymmetric half-
plane transfer function. To show that (7)
is stable, we will show that its denomin-
ator is non-zero on e. Since we have
assumed that C(z~,z2) and D(zl,z2) are

nonzero on e, it is only necessary to show
that B[G(zl,z2), H(z1,z2)I is also nonzero

on e. Since for any fixed Z2 with IZ21

=1, G(z1,z2) is an analytic function of 21

on {zl:-lz~l s 1) (this follows from the

fact that C(z, ,z.) # O on r), and since

1G(z1,z2)[ = ; V=(Z1,Z2) & T2 ~ {(21,22):

121! = 122! = 1], it follows from the

maximum modulus theorem (for one complex
variable) that IG(z1,z2)I s l~(z1tz2)

E r. In particular, IG(0,z2)I s 1 for

2



1221= 1, and so, using the fact that

G(0,z2) is an analytic function of Z2 on

{Z2: [Z2[ ‘ 1) and again applying the

ma;imum-modulus theorem, we conclude that
IG(0,z2)[ s 1 if IZ21 s 1. We next apply

8
exactly the same argument to H(z1,z2) to

conclude that the moduli of G(Z1JZ2) and

H(z1,z2) are both $ 1 on 0. Since B(zl,z2)
9

# O on ~2 is assumed, it follows that
B(G(0,Z2), H(0,z2)] # O for IZ21~ 1 and

B[G(Z1,Z2), H(z1,z2)1 # O on r. Hence this

function is non-zero on 9 = Aur and the
filter is stable.

Case II. F(z1,z2) = A(zl,z2)\B(z1,z2)

is a nonsymmetric half-plane transfer func-

tion with B(z1,z2) # O on @. C(z1,z2) in

equation (1) is a nonsymmetric half-plane
function with is non-zero on e, and H(Z11Z2)

‘h= *Z z where Nh ~ 1.

●

In this case, the transformed filter
will have a stable nonsynunetric half-plane
transfer function if the inequalities

Mg2Mc+l, NgzNc (9)

are satisfied. With the fractions cleared,
the new transfer function is:

‘h] =
F[G(z1,z2)tz2

‘h
A[G(Z1(Z2),*Z2 l[c(z1,z2)l@

(lo)
‘h

B[G(Z1,Z2),*Z2 l[c(z18z2)la

where a = max{Ma,t%}. The denominator of

(10) may be written as:

N

& ‘h”nl[c[zl, 2b(O,n) [Z2 z )1* +

MN

$2

(Mg&l) N
{b(m,n)[zl Z2gC(z~1,z~])]m

=1 n=-Lb

Nh. n
[C(Z1,Z2)I ~-m[zyz2 ]} (11)

Since the expressions inside each of the
square brackets are either quarter-plane or
nonsymmetric half-plane functions, by lemma
1 we conclude that (11) is a nonsymmetric
half-plane function, and, by applying a

similar argument to the numerator, that
(10) is a nonsymmetric half-plane transfer
function.

To show that (10) is stable, we show
that its denominator is non-zero on e.
C(Z1,Z2) is non-zero on 9 and so it is

‘honly necessary to show that B[f3(zl,z2),z2 ]

is also non-zero on e. Since Mg a Mc + 1,
rrh

G(CI,Z2) = O, and SO B[G(0,z2),z2 1 =
●

‘h
B(0,z2 ). Since B(0,z2) # O for IZ21 ~ 1

‘his assumed, it follows that B[G(0,Z2)JZ2 ]

# O for IZ21 $1 also. Next, using the

argument used in case I, we see that
IG(z1,z2)I s I v (21,22) E r. Since

B(Z1JZ2) # O V (Zl,Z2) c ris assumed,it
‘hfollows that B[G(Z1,Z2),Z2 1 # O on ralso~

hence (10) is stable.

The above two cases are the only ones
for which spectral transformations work in
general. Case I includes quarter-plane
filters as a special case. The inequality
constraints required in both cases are
necessary to insure that the filter has the
form of an asymmetric half-plane filter.
The reason the form of H(Z1JZ2) is so

limited in case II is that Powers of z~l

occur in B(zl,z2): hence, after clearing

the fractions in the numerator and denomin-
ator of F[G(Z1,Z2) ,H(z1,z2)] , there will ‘n

general be factors of both D(z1,z2) and

zJlz~D[z:l, z;l) in the denominator func-

tion. If one of these factors has no zeros
on r, then in general the other must have
a zero on r, and so it would be impossible
for the denominator to be non-zero on rce.

III. Behavior of Nonsymm etric Half-Plane
All-Pass Functions

In section I we showed that the fre-
quency response of a spectrally transformed
filter could be described as the composi-
tion of the original frequency response
function with a mapping from the 2-D fre-
quency plane into itself. This mapping iS
carried out by the two all-pass functions
G(zl,z2) and H(z1,z2). An important item

in the specification of a frequency re-
sponse function is the number of its pass
and stop regions. The number of such
regions is determined in large part by the
character of the mapping mentioned above.
In particular, it is important to know the
number of times each all-pass function maps

3



t
!

a given curve in the 2-D frequency plane
around the unit circle. Pendergrasa et al..—
considered this problem for the quarter-
plane case in [11; here we extend their
results to the nonsynmetric half-plane
case.

We will consider the all-pass func-
tion G(z,,z5) of equation (1) with the

denomina~or’function C(Z1,Z2) being of the

forms given by equation (5). We will also
assume that M z Mc and N z Nc, and that

9
C(z1,z2) # O % e.

Let U2 c [-r,%] be fixed, then C(Z1,
-iw2

+iu2
e ) and C(zl,e ) are both polynomials

in zl having no zeros on {zl: Izll $ 1}.
M -iw2 N iu2

It follows that zlg(e ) ‘. C(z~lre )

is a polynomial in Z1 with all of its M=

zeros in {21: Izll < 11, and that: -

M’
-l~2)N9c(z;l,e

iW2
- iw zlg(e

G(zl,e 2, = ~ (12)
- iwa

C(zl,e ‘)
J.

has no poles on {zl: Izll s1} and all of

its Ma zeros in{zl: 1211 < 1}. Applying

the C~uchy mapping theorem [41, we conclude
that (with W2 fixed) as wl increases from

-iw
1

-r to +Kt the contour produced by G(e ,
-iw

e 2, goes around the unit circle Mg times.

Defining

i3c(zl,z2)

J

822
N(zl) = C(Z1,Z2) dz2

1221=1

we see that since C(z1,Z2) # O on~ N(zl)

is a continuous function on the Z1 ~nit

disc. Furthermore, since (for fixed Zl)

N(zl) COUntS the number of zeros less the

number of poles of C(Z1,Z2) (considered aS

a function of Z2) on the Z2 unit diet, N(zl)

must be integer valued and therefore con-
stant on the Z1 unit disc. Now, since

C(0,Z2) is a polynomial in Z2 and is assumed
nonzero on the Z2 unit disc, it follows that

N(z1) = N(O) = O on the zl unit disc. This

allows US to conclude that for anY fixed zl

on the z 1
unit disc, C(Z1,Z2) , thought

as a function of Z2, has as manY zeros

of

as

poles on the Z2 unit disc. If we now let
-iw

wl e [-x,x] be fixed, we see that C(e 1,
iwl

Z2) and C(e ,Z2) each have as many zeros

as poles on {22: 1221 s 1}. These parti-

cular poles and zeros are actually in {Z2:

1221 < 11 because the poles are obviously

at the origin and C(Z1,Z2) + O on T2 C r

is asswned. Suppose that (after WI has

been fixed and the terms have been col-
lected) the highest positive power of Z2

+iwl
appearing in C(e ,Z2) is N and the

highest negative power is L (clearly
+iwl

N$NC, L%LC). Then C(@ ,Z2) has

N + L zeros and L poles, with L poles’ and
L zeros in U and N zeros in the complement

+iw
of {Z2: IZ21 $ 1] follows that z>(e 1,

z~l) is a polynomial in Z2 with N zeros

in {z2: 1221 c 1} and none on {Z2: IZ21

= 1}, and therefore that [e
-%1%2:9

4+iwl
C(e ,zjl) is a polynomial in Z2 with N

zeros in {22: lz21 < 1} and none on {Z2:

IZ21= l). This allows us to conclude that

the function:

-iw M N iwl

- iw [e 1] ‘z2gC(e
G(e

,2;1)
1,Z2) =

-1.w.
(13)

L

has Na more zeros than Poles in {z2: 1221

c 1] ~nd no poles or zeros on {z2: lz21 =—
1). BY the Cauchy mapping theorem, it
follows that (with W, fixed) as U, increases

from -z to +* the coktour produce~ by
-iwl -iw2

G(e ,e ) goes around the unit circle
Ng times.

IV. Discussion

In this paper, we extended some aspects
of the theory of spectral transformations
to include nonsynunetric half-plane filters.
Unfortunately, the results are not as satis-
fying as those for quarter-plane filters
where substituting first quadrant stable
all-pass functions into a first-quadrant

4



stable transfer function always yields a
new transfer function which is first-
quadrant stable. Here spectral transfor-
mations where shown to be useful in only
two special cases.

●
Case I is the most important and use-

ful of the two because it is a simple
extension of the quarter-plane case: given
any first-quadrant stable quarter-plane
transfer function,

●
we can substitute ar-

bitrary stable nonsyrnmetric half-plane all-
pass functions, and the resulting nonsym-
metric half-plane transfer function will
always be stable.

In section III, we showed that the
number of times certain lines in the 2-D
frequency plane are mapped around the unit

-iwl -iu
circle by G(e

2
,e ) is”determined by

the integers Ma and Na. This is exactly

the same resul{ devel~ped in [1] for the
quarter-plane case. It is interesting to
observe that L= has no effect on the number

of times the unit circle is traversed, and
so it is possible in the nonsynmretric half-
plane case to increase the order of the
all-pass function (by adding higher (order

terms in 22-1 to C(Z1,Z2) without increasing

the number of pass and stop bands. Since
adding higher order terms in positive
powers of zl or z2 will usually increase

Mg or Ng (typically M9 = Mc and Ng = Nc),

we see that the quarter-plane case does
not possess this flexibility.

In [1], only the case where wl or W2

was fixed at zero and (respectively) W2 or..
Wl was allowed to vary was considered,

whereas in section III the fixed variable
could have any value in [-rtr]. This slight
extension of what was done in [1] has an
unfortunate consequence for certain appli-
cations of spectral transformations. On
each vertical line segment stretching from

.
bottom to top of the square [-a,rl’ the

-iw
1

- iw

function G(e ,e 2, must assume the
value of each voint on the unit circle at
least Na times; similarly,~on each horizon-

tal lin~ segment running from one side of
s the square to the other, the value of each

point on the unit circle must be assumed at
least Ma times. These restrictions on the

behavio~ of the all-pass function severely
9 limit the types of frequency response which

can be produced by a spectral transforma-
tion operating on a given transfer function.
For example, suppose we are given a stable
1-D lowpass transfer function H(z) (note
that H(z) may be interpreted as being the
stable quarter-plane transfer function

ihzl#z2) ~ H[zl]) upon which we perform a

spectral transformation to give the trans-
fer function H[G(z ~,z2)l. From our dis-

cussion above we see that on each vertical

(horizontal) line in the square [-r,r]2,
-iwl -iu

the amplitude response lHIG(e ,e 2)11
must assume both the minimum and maximum

values of H(e-lw ) at least Ng(Mg) times.

From this we conclude that it is impossible
to use this approach to produce a filter
whose pass (or stop) band is limited to
some small region of the frequency plane
(e.g., a lowpass or a highpass filter). It
should be noted that the discussion in this
paragraph applies to both nonsymmetric
half-plane and quarter-plane all-pass
functions.
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